Mechanism of collagen phagocytosis by human gingival fibroblasts: importance of collagen structure in cell recognition and internalization.

نویسندگان

  • G C Knowles
  • M McKeown
  • J Sodek
  • C A McCulloch
چکیده

Phagocytosis of extracellular collagen by fibroblasts appears to be the principal pathway of collagen degradation in the physiological turnover of connective tissues. To study the mechanism of collagen phagocytosis, subconfluent gingival fibroblasts were serum-starved and incubated for up to 16 h with collagen-coated fluorescent latex beads. Internalization of beads was measured either by flow cytometry or by image analysis. Phagocytosis was blocked by inactivation of protein kinase C with staurosporin, and was also decreased significantly (32%) when cells were pre-incubated for 6h with cycloheximide. Phagocytosis of collagen-coated beads appeared to be receptor-mediated, since internalization was inhibited threefold by the cell-attachment blocking peptide (GRGDSP). The process of internalization was influenced by the type of collagen and its molecular structure. Thus, internalization was decreased in the order: type I greater than V greater than III collagen, and internalization of type I collagen was reduced significantly by digestion with either bacterial (45%) or vertebrate (38%) collagenase. However, collagen denaturation, which facilitates binding to fibronectin, did not effect internalization. Although concanavalin A stimulated both phagocytosis (71%) and collagenase synthesis, PMA and IL-1, which also increase collagenase expression, did not affect phagocytosis, indicating that phagocytosis of collagen-coated beads does not require collagenase. Moreover, analysis of tissue inhibitor of metalloproteinase expression revealed no difference between phagocytic and non-phagocytic cells. Collectively, these results demonstrate that collagen phagocytosis is regulated through protein kinase C and is also dependent upon cellular recognition and collagen structure, but not on the expression of collagenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

Background  Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

  Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...

متن کامل

In vitro Comparison of Viability of Human Gingival Fibroblast Cells on Collagen Barriers

 Background and purpose: Human gingival fibroblasts cultured on collagen membrane is an alternative treatment method in guided regeneration. This in vitro study aimed at evaluating and comparing the human gingival fibroblasts viability on two types of collagen-rich membranes. Materials and methods: Human gingival fibroblast cells (HGF1-RT1) were cultured on two types of collagen-rich membranes...

متن کامل

Drug-induced gingival overgrowth--a review.

Drug-induced gingival overgrowth is a side effect associated with 3 types of drugs: anticonvulsants (phenytoin), immunosuppressive agents (cyclosporine A), and various calcium channel blockers for cardiovascular diseases. Gingival overgrowth is characterized by the accumulation of extracellular matrix in gingival connective tissues, particularly collagenous components with various degrees of in...

متن کامل

Mechanism of cyclosporin-induced inhibition of intracellular collagen degradation.

The immunosuppressant cyclosporin A (CsA) markedly inhibits collagen degradation by an intracellular phagocytic pathway in fibroblasts, an effect that can lead to massive gingival overgrowth. We used a collagen bead model of collagen phagocytosis to determine whether CsA inhibits internalization by blocking efflux of calcium from endoplasmic reticulum (ER) and mitochondrial calcium stores. CsA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 98 ( Pt 4)  شماره 

صفحات  -

تاریخ انتشار 1991